MeCP2 in the rostral striatum maintains local dopamine content critical for psychomotor control.
نویسندگان
چکیده
Methyl-CpG binding protein 2 (MeCP2) is a chromatin regulator highly expressed in mature neurons. Mutations of MECP2 gene cause >90% cases of Rett syndrome, a neurodevelopmental disorder featured by striking psychomotor dysfunction. In Mecp2-null mice, the motor deficits are associated with reduction of dopamine content in the striatum, the input nucleus of basal ganglia mostly composed of GABAergic neurons. Here we investigated the causal role of MeCP2 in modulation of striatal dopamine content and psychomotor function. We found that mice with selective removal of MeCP2 in forebrain GABAergic neurons, predominantly in the striatum, phenocopied Mecp2-null mice in dopamine deregulation and motor dysfunction. Selective expression of MeCP2 in the striatum preserved dopamine content and psychomotor function in both males and females. Notably, the dopamine deregulation was primarily confined to the rostral striatum, and focal deletion or reactivation of MeCP2 expression in the rostral striatum through adeno-associated virus effectively disrupted or restored dopamine content and locomotor activity, respectively. Together, these findings demonstrate that striatal MeCP2 maintains local dopamine content in a non-cell autonomous manner in the rostral striatum and that is critical for psychomotor control.
منابع مشابه
Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor.
Stimulation of dopamine D1 receptors has profound effects on addictive behavior, movement control, and working memory. Many of these functions depend on dopaminergic systems in the striatum and D1-D2 dopamine receptor synergies have been implicated as well. We show here that deletion of the D1 dopamine receptor produces a neural phenotype in which amphetamine and cocaine, two addictive psychomo...
متن کاملThe effect of intrastriatal injection of estrogen on pallidal field potential and rigidity in Parkinsonian -ovariectomized rats
The major pathological feature of Parkinson’s disease (PD) is a progressive loss of dopamine-producing neurons of the substantia nigra pars compacta (SNc), resulting in a reduction of dopamine (DA) content in the target field of these neurons, the striatum (STR). The present evidences suggest that female sex hormones may influence the onset and severity of PD symptoms. PD is more prevalent in m...
متن کاملLoss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway.
Mutations in the methyl-CpG-binding protein 2 (MeCP2) result in Rett syndrome (RTT), an X-linked disorder that disrupts neurodevelopment. Girls with RTT exhibit motor deficits similar to those in Parkinson's disease, suggesting defects in the nigrostriatal pathway. This study examined age-dependent changes in dopamine neurons of the substantia nigra (SN) from wild-type, presymptomatic, and symp...
متن کاملModular patterning of structure and function of the striatum by retinoid receptor signaling.
Retinoid signaling plays a crucial role in patterning rhombomeres in the hindbrain and motor neurons in the spinal cord during development. A fundamentally interesting question is whether retinoids can pattern functional organization in the forebrain that generates a high order of cognitive behavior. The striatum contains a compartmental structure of striosome (or "patch") and intervening matri...
متن کاملThe effect of intrastriatal injection of estrogen on pallidal field potential and rigidity in Parkinsonian -ovariectomized rats
The major pathological feature of Parkinson’s disease (PD) is a progressive loss of dopamine-producing neurons of the substantia nigra pars compacta (SNc), resulting in a reduction of dopamine (DA) content in the target field of these neurons, the striatum (STR). The present evidences suggest that female sex hormones may influence the onset and severity of PD symptoms. PD is more prevalent in m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 15 شماره
صفحات -
تاریخ انتشار 2015